Skip to main content\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix B List of Trigonometric Identities
\(\displaystyle [\sin(\alpha)]^2+[\cos(\alpha)]^2=1\)
\(\displaystyle \cos(\alpha+\beta)=\cos(\alpha)\cos(\beta)-\sin(\alpha)\sin(\beta)\)
\(\displaystyle \sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)\)
\(\displaystyle \cos(2\alpha) = [\cos(\alpha)]^2-[\sin(\alpha)]^2 = 2[\cos(\alpha)]^2-1 = 1-2[\sin(\alpha)]^2\)
\(\displaystyle \sin(2\alpha)=2\sin(\alpha)\cos(\alpha)\)
\(\displaystyle [\cos(\alpha)]^2=\displaystyle\frac{1+\cos(2\alpha)}{2}\)
\(\displaystyle [\sin(\alpha)]^2=\displaystyle\frac{1-\cos(2\alpha)}{2}\)
\(\displaystyle \sin(\alpha)\cos(\beta)=\displaystyle\frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{2}\)
\(\displaystyle \sin(\alpha)\sin(\beta)=\displaystyle\frac{\cos(\alpha-\beta)-\cos(\alpha+\beta)}{2}\)
\(\displaystyle \cos(\alpha)\sin(\beta)=\displaystyle\frac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}{2}\)
\(\displaystyle \cos(\alpha)\cos(\beta)=\displaystyle\frac{\cos(\alpha-\beta)+\cos(\alpha+\beta)}{2}\)
\(\displaystyle \sin(\alpha)+\sin(\beta)=2\sin\left(\displaystyle\frac{\alpha+\beta}{2}\right)\cos\left(\displaystyle\frac{\alpha-\beta}{2}\right)\)
\(\displaystyle \sin(\alpha)-\sin(\beta)=2\cos\left(\displaystyle\frac{\alpha+\beta}{2}\right)\sin\left(\displaystyle\frac{\alpha-\beta}{2}\right)\)
\(\displaystyle \cos(\alpha)+\cos(\beta)=2\cos\left(\displaystyle\frac{\alpha+\beta}{2}\right)\cos\left(\displaystyle\frac{\alpha-\beta}{2}\right)\)
\(\displaystyle \cos(\alpha)-\cos(\beta)=-2\sin\left(\displaystyle\frac{\alpha+\beta}{2}\right)\sin\left(\displaystyle\frac{\alpha-\beta}{2}\right)\)